Skip to content

Data Modeling

Ignis streamlines data modeling with Drizzle ORM by providing powerful helpers and "enrichers" that reduce boilerplate code for common schema patterns.

1. Base Entity

All entity models should extend BaseEntity. This provides integration with the framework's repository layer and automatic schema generation support.

The recommended pattern is to define the schema and relations as static properties on the class. This keeps the definition self-contained and enables powerful type inference.

Example (src/models/entities/user.model.ts):

typescript
import { BaseEntity, extraUserColumns, generateIdColumnDefs, model } from '@venizia/ignis';
import { pgTable } from 'drizzle-orm/pg-core';

@model({ type: 'entity' })
export class User extends BaseEntity<typeof User.schema> {
  // 1. Define schema as a static property
  static override schema = pgTable('User', {
    ...generateIdColumnDefs({ id: { dataType: 'string' } }),
    ...extraUserColumns({ idType: 'string' }),
  });

  // 2. Define relations as a static method (return empty array if none)
  static override relations = () => [];
}

2. Schema Enrichers

Instead of manually defining common columns like primary keys, timestamps, or audit fields in every table, use Ignis "enrichers".

Available Enrichers:

EnricherDescriptionColumns Added
generateIdColumnDefsAdds a Primary Keyid (text, number, or big-number)
generatePrincipalColumnDefsAdds polymorphic relation fields{discriminator}Id, {discriminator}Type
generateTzColumnDefsAdds timestampscreatedAt, modifiedAt (auto-updating)
generateUserAuditColumnDefsAdds audit fieldscreatedBy, modifiedBy (supports allowAnonymous option)
generateDataTypeColumnDefsAdds generic value fieldsnValue (number), tValue (text), jValue (json), etc.
extraUserColumnsComprehensive user fieldsCombines audit, timestamps, status, and type fields

Usage Example:

typescript
import {
  generateIdColumnDefs,
  generateTzColumnDefs,
  generateUserAuditColumnDefs,
} from '@venizia/ignis';
import { pgTable, text } from 'drizzle-orm/pg-core';

export const configurationTable = pgTable(
  'Configuration',
  {
    // 1. Auto-generate text Primary Key with UUID default
    ...generateIdColumnDefs({ id: { dataType: 'string' } }),

    // 2. Auto-generate createdAt / modifiedAt
    ...generateTzColumnDefs(),

    // 3. Auto-generate createdBy / modifiedBy
    ...generateUserAuditColumnDefs({
      created: { dataType: 'string', columnName: 'created_by' },
      modified: { dataType: 'string', columnName: 'modified_by' },
    }),

    // 4. Your custom columns
    code: text('code').notNull(),
    description: text('description'),
    group: text('group').notNull(),
  },
  (table) => [
    // Define indexes/constraints here
    unique('UQ_code').on(table.code),
  ]
);

ID Type Options

The generateIdColumnDefs enricher supports multiple ID strategies:

Data TypePostgreSQL TypeJavaScript TypeUse Case
stringTEXTstringUUIDs, custom IDs, distributed systems
numberINTEGER GENERATED ALWAYS AS IDENTITYnumberAuto-increment, simple sequences
big-number (mode: number)BIGINT GENERATED ALWAYS AS IDENTITYnumberLarge sequences (up to 2^53)
big-number (mode: bigint)BIGINT GENERATED ALWAYS AS IDENTITYbigintVery large sequences (up to 2^64)

Examples:

typescript
// String ID with default UUID generator
...generateIdColumnDefs({ id: { dataType: 'string' } })
// Result: id TEXT PRIMARY KEY DEFAULT crypto.randomUUID()

// String ID with custom generator (e.g., nanoid, ulid)
import { nanoid } from 'nanoid';
...generateIdColumnDefs({ id: { dataType: 'string', generator: () => nanoid() } })

// Auto-increment integer
...generateIdColumnDefs({ id: { dataType: 'number' } })
// Result: id INTEGER GENERATED ALWAYS AS IDENTITY PRIMARY KEY

// Big integer for large datasets (JavaScript number - up to 2^53)
...generateIdColumnDefs({ id: { dataType: 'big-number', numberMode: 'number' } })

// Big integer with native BigInt (up to 2^64)
...generateIdColumnDefs({ id: { dataType: 'big-number', numberMode: 'bigint' } })

// With sequence options
...generateIdColumnDefs({
  id: {
    dataType: 'number',
    sequenceOptions: { startWith: 1000, increment: 1 },
  },
})

Principal Enricher (Polymorphic Relations)

Use generatePrincipalColumnDefs when a record can belong to different entity types (polymorphic relationship).

Use Case: A Comment can belong to either a Post or a Product.

typescript
import { generateIdColumnDefs, generatePrincipalColumnDefs } from '@venizia/ignis';
import { pgTable, text } from 'drizzle-orm/pg-core';

export const commentTable = pgTable('Comment', {
  ...generateIdColumnDefs({ id: { dataType: 'string' } }),

  // Polymorphic relation: commentable can be Post or Product
  ...generatePrincipalColumnDefs({
    discriminator: 'commentable',      // Field prefix
    polymorphicIdType: 'string',       // ID type of related entities
    defaultPolymorphic: 'Post',        // Default type
  }),

  content: text('content').notNull(),
});

// Generated columns:
// - commentableId: TEXT NOT NULL
// - commentableType: TEXT DEFAULT 'Post'

Querying polymorphic relations:

typescript
// Find all comments on a specific post
const comments = await commentRepo.find({
  filter: {
    where: {
      commentableType: 'Post',
      commentableId: postId,
    },
  },
});

// Find all comments on a product
const productComments = await commentRepo.find({
  filter: {
    where: {
      commentableType: 'Product',
      commentableId: productId,
    },
  },
});

3. Defining Relations

Relations are defined using the TRelationConfig structure within the static relations method of your model.

Relation Types

TypeConstantDescriptionExample
One-to-OneRelationTypes.ONESingle related recordUser → Profile
One-to-ManyRelationTypes.MANYMultiple related recordsUser → Posts

Basic Relations

One-to-One (belongsTo):

typescript
import { BaseEntity, model, RelationTypes, TRelationConfig } from '@venizia/ignis';
import { User } from './user.model';

@model({ type: 'entity' })
export class Configuration extends BaseEntity<typeof Configuration.schema> {
  static override schema = pgTable('Configuration', {
    ...generateIdColumnDefs({ id: { dataType: 'string' } }),
    createdBy: text('created_by'),
    // ...
  });

  // Define relations
  static override relations = (): TRelationConfig[] => [
    {
      name: 'creator',               // Relation name used in include
      type: RelationTypes.ONE,       // One Configuration → One User
      schema: User.schema,           // Related entity's schema
      metadata: {
        fields: [Configuration.schema.createdBy],  // Foreign key
        references: [User.schema.id],              // Primary key
      },
    },
  ];
}

One-to-Many (hasMany):

typescript
@model({ type: 'entity' })
export class User extends BaseEntity<typeof User.schema> {
  static override schema = pgTable('User', {
    ...generateIdColumnDefs({ id: { dataType: 'string' } }),
    name: text('name').notNull(),
  });

  static override relations = (): TRelationConfig[] => [
    {
      name: 'posts',                 // User.posts
      type: RelationTypes.MANY,      // One User → Many Posts
      schema: Post.schema,
      metadata: {
        fields: [User.schema.id],
        references: [Post.schema.authorId],
      },
    },
    {
      name: 'comments',              // User.comments
      type: RelationTypes.MANY,
      schema: Comment.schema,
      metadata: {
        fields: [User.schema.id],
        references: [Comment.schema.userId],
      },
    },
  ];
}

Using Relations in Queries

typescript
// Eager load single relation
const configs = await configRepo.find({
  filter: {
    include: [{ relation: 'creator' }],
  },
});
// Result: [{ id, code, ..., creator: { id, name, email } }]

// Eager load multiple relations
const users = await userRepo.find({
  filter: {
    include: [
      { relation: 'posts' },
      { relation: 'comments' },
    ],
  },
});

// Nested relations (up to 2 levels recommended)
const users = await userRepo.find({
  filter: {
    include: [{
      relation: 'posts',
      scope: {
        include: [{ relation: 'comments' }],
      },
    }],
  },
});

TIP

Avoid deeply nested includes (more than 2 levels). Each level adds query complexity. For complex data fetching, consider separate queries.

4. Repositories and Auto-Discovery

Ignis simplifies the connection between models, repositories, and datasources.

DataSource Auto-Discovery

DataSources automatically discover their schema from the repositories that bind to them. You do not need to manually register schemas in the DataSource constructor.

typescript
// src/datasources/postgres.datasource.ts
@datasource({ driver: 'node-postgres' })
export class PostgresDataSource extends BaseDataSource<TNodePostgresConnector, IDSConfigs> {
  constructor() {
    super({
      name: PostgresDataSource.name,
      config: { /* connection config */ },
      // NO schema property needed - auto-discovered!
    });
  }

  override configure(): ValueOrPromise<void> {
    // This method automatically collects all schemas from bound repositories
    const schema = this.getSchema();
    this.connector = drizzle({ client: new Pool(this.settings), schema });
  }
}

Repository Binding

Repositories use the @repository decorator to bind a Model to a DataSource. This binding is what powers the auto-discovery mechanism.

Pattern 1: Zero Boilerplate (Recommended)

For most repositories, you don't need a constructor. The DataSource is automatically injected.

typescript
@repository({ model: Configuration, dataSource: PostgresDataSource })
export class ConfigurationRepository extends DefaultCRUDRepository<typeof Configuration.schema> {
  // No constructor needed!
}

Pattern 2: Explicit Injection (Advanced)

If you need to perform custom initialization or inject additional dependencies, you can define a constructor. Important: The first parameter must be the DataSource.

typescript
@repository({ model: User, dataSource: PostgresDataSource })
export class UserRepository extends ReadableRepository<typeof User.schema> {
  constructor(
    @inject({ key: 'datasources.PostgresDataSource' })
    dataSource: PostgresDataSource,
  ) {
    super(dataSource);
  }

  // Custom methods
  async findByRealm(realm: string) {
    return this.findOne({ filter: { where: { realm } } });
  }
}

5. Hidden Properties

Protect sensitive data by configuring properties that are excluded at the SQL level. Hidden properties are never returned through repository queries.

typescript
@model({
  type: 'entity',
  settings: {
    hiddenProperties: ['password', 'secret'],
  },
})
export class User extends BaseEntity<typeof User.schema> {
  static override schema = pgTable('User', {
    ...generateIdColumnDefs({ id: { dataType: 'string' } }),
    email: text('email').notNull(),
    password: text('password'),  // Never returned via repository
    secret: text('secret'),      // Never returned via repository
  });
}

Key points:

  • Hidden properties are excluded from SELECT, INSERT RETURNING, UPDATE RETURNING, DELETE RETURNING
  • You can still filter by hidden properties in where clauses
  • Hidden properties are recursively excluded from included relations
  • Use the connector directly when you need to access hidden data (e.g., password verification)

Reference: See Hidden Properties for complete documentation.

6. Database Migrations

Drizzle Kit handles schema migrations. Follow these best practices for safe migrations.

Generate Migrations

bash
# Generate migration from schema changes
bun run db:generate

# Apply migrations to database
bun run db:migrate

# Push schema directly (development only)
bun run db:push

Migration Best Practices

PracticeDescription
One change per migrationKeep migrations focused and reversible
Never edit applied migrationsCreate new migration instead
Test on staging firstAlways test migrations before production
Backup before migratepg_dump before running in production
Use transactionsDrizzle wraps migrations in transactions by default

Safe Schema Changes

Adding columns (safe):

typescript
// Add with default value to avoid nulls in existing rows
newField: text('new_field').default(''),

// Or allow null initially, then backfill and set notNull
newField: text('new_field'),  // Initially nullable

Renaming columns (requires care):

sql
-- In custom migration SQL
ALTER TABLE "User" RENAME COLUMN "old_name" TO "new_name";

Dropping columns (dangerous):

typescript
// 1. First, remove all code references
// 2. Deploy code changes
// 3. Then drop in separate migration

Custom Migration SQL

For complex migrations, use custom SQL:

typescript
// drizzle/migrations/0005_custom_migration.ts
import { sql } from 'drizzle-orm';

export async function up(db: DrizzleDB) {
  // Add index for performance
  await db.execute(sql`
    CREATE INDEX CONCURRENTLY idx_user_email
    ON "User" (email)
    WHERE status = 'ACTIVE'
  `);

  // Backfill data
  await db.execute(sql`
    UPDATE "User"
    SET normalized_email = LOWER(email)
    WHERE normalized_email IS NULL
  `);
}

export async function down(db: DrizzleDB) {
  await db.execute(sql`DROP INDEX IF EXISTS idx_user_email`);
}

Migration Checklist

StepAction
1Review generated SQL before applying
2Test migration on staging database
3Backup production database
4Run during low-traffic period
5Monitor for errors after migration
6Have rollback plan ready

WARNING

Never run migrations directly on production without testing. Use staging environments that mirror production data structure.

See Also